|
|
|
|
|
LECTURE 5: CANDIDATE WORLDS FOR ALIEN LIFE Many bodies in the Solar System have been suggested as being capable of containing conventional organic life. The most commonly suggested ones are listed below; of these, five of the nine are moons, and are thought to have large bodies of underground liquid (streams), where life may have evolved in a similar fashion to deep sea vents.
Numerous other bodies have been suggested as potential hosts for microbial life. Fred Hoyle has proposed that life might exist on comets, as some Earth microbes managed to survive on a lunar probe for many years. However, it is considered highly unlikely that complex multicellular organisms of the conventional chemistry of terrestrial life (animals, plants) could exist under these living conditions. Astronomers also search for extrasolar planets that they believe would be conducive to life, such as Gliese 581 c and OGLE-2005-BLG-390Lb, which have been found to have Earth-like qualities.[21][22] Current radiodetection methods have been inadequate for such a search, as the resolution afforded by recent technology is inadequate for detailed study of extrasolar planetary objects. Future telescopes should be able to image planets around nearby stars, which may reveal the presence of life (either directly or through spectrography which would reveal key information such as the presence of free oxygen in a planet's atmosphere):
It has been argued that Alpha Centauri, the closest star system to Earth, may contain planets which could be capable of sustaining life.[23] On April 24, 2007, scientists at the European Southern Observatory in La Silla, Chile said they had found the first Earth-like planet. The planet, known as Gliese 581 c, orbits within the habitable zone of its star Gliese 581, a red dwarf star which is a scant 20.5 light years (194 trillion km) from Earth. It was initially thought that this planet could contain liquid water. However, recent computer simulations of the climate on Gliese 581c by Werner Von Bloh and his team at Germany's Institute for Climate Impact Research suggest carbon dioxide and methane in the atmosphere would create a runaway greenhouse effect. This would warm the planet well above the boiling point of water (100 degrees Celsius/212 degrees Fahrenheit), thus dimming the hopes of finding life. As a result of greenhouse models, scientists are now turning their attention to Gliese 581 d, which lies just outside of the star's traditional habitable zone.[24] On May 29, 2007, the Associated Press released a report stating that scientists have identified twenty-eight exo-solar planetary bodies. One of these newly discovered planets is said to have many similarities with Neptune.[25]
READING FOR THE NEXT LECTURE
|
|
Site Design - University of Antarctica Technical Team - Ross Natural Science College; c. 2010 |