|
|
|
|
|
LECTURE 4: MODERN THOUGHTS ON EXTRATERRESTRIAL LIFE This enthusiasm toward the possibility of alien life continued well into the 20th century. Indeed, the roughly three centuries from the Scientific Revolution through the beginning of the modern era of solar system probes were essentially the zenith for belief in extraterrestrials in the West. Many astronomers and other secular thinkers, at least some religious thinkers, and much of the general public were largely satisfied that aliens were a reality. This trend was finally tempered as actual probes visited potential alien abodes in the solar system. The moon was decisively ruled out as a possibility while Venus and Mars, long the two main candidates for extraterrestrials, showed no obvious evidence of current life. The other large moons of our system which have been visited appear similarly lifeless, though the interesting geothermic forces observed (Io's volcanism, Europa's ocean, Titan's thick atmosphere) have underscored how broad the range of potentially habitable environments may be. Although the hypothesis of a deliberate cosmic silence of advanced extraterrestrials is also a possibility,[12] the failure of the SETI program to detect anything resembling an intelligent radio signal after four decades of effort has partially dimmed the optimism that prevailed at the beginning of the space age. Emboldened critics view the search for extraterrestrials as unscientific, despite the fact the SETI program is not the result of a continuous, dedicated search but instead utilizes what resources and manpower it can, when it can.[13]Thus, the three decades preceding the turn of the second millennium saw a crossroads reached in beliefs in alien life. The prospect of ubiquitous, intelligent, space-faring civilizations in our solar system appears increasingly dubious to many scientists. Still, in the words of SETI's Frank Drake, "All we know for sure is that the sky is not littered with powerful microwave transmitters."[14] Drake has also noted that it is entirely possible advanced technology results in communication being carried out in some way other than conventional radio transmission. At the same time, the data returned by space probes and giant strides in detection methods have allowed science to begin delineating habitability criteria on other worlds and to confirm that, at least, other planets are plentiful though aliens remain a question mark. In 2000, geologist and paleontologist Peter Ward and astrobiologist Donald Brownlee published a book entitled Rare Earth: Why Complex Life is Uncommon in the Universe.[15] In it, they discussed the Rare Earth hypothesis, in which they claim that Earth-like life is rare in the universe, while microbial life is common in the universe. The possible existence of primitive (microbial) life outside of Earth is much less controversial to mainstream scientists although at present no direct evidence of such life has been found. Indirect evidence has been offered for the current existence of primitive life on the planet Mars. However, the conclusions that should be drawn from such evidence remain in debate. The scientific search for extraterrestrial life is being carried out in two different ways, directly and indirectly. Scientists are directly searching for evidence of unicellular life within the solar system, carrying out studies on the surface of Mars and examining meteors that have fallen to Earth. A mission is also proposed to Europa, one of Jupiter's moons with a possible liquid water layer under its surface, which might contain life. There is some limited evidence that microbial life might possibly exist or have existed on Mars.[16] An experiment on the Viking Mars lander reported gas emissions from heated Martian soil that some argue are consistent with the presence of microbes. However, the lack of corroborating evidence from other experiments on the Viking indicates that a non-biological reaction is a more likely hypothesis. Recently, Circadian rhythms have been allegedly discovered in Viking data. The interpretation is controversial, see Viking biological experiments. Independently in 1996 structures resembling nanobacteria were reportedly discovered in a meteorite, ALH84001, thought to be formed of rock ejected from Mars. This report is also controversial and scientific debate continues. In February 2005, NASA scientists reported that they had found strong evidence of present life on Mars.[17] The two scientists, Carol Stoker and Larry Lemke of NASA's Ames Research Center, based their claims on methane signatures found in Mars' atmosphere that resemble the methane production of some forms of primitive life on Earth, as well as their own study of primitive life near the Rio Tinto river in Spain. NASA officials soon denied the scientists' claims, and Stoker herself backed off from her initial assertions.[18] Though such findings are still very much in debate, support among scientists for the belief in the existence of life on Mars seems to be growing. In an informal survey conducted at the conference in which the European Space Agency presented its findings, 75 percent of the scientists in attendance reported to believe that life once existed on Mars; 25 percent reported a belief that life currently exists there.[19] The Gaia hypothesis stipulates that any planet with a robust population of life will have an atmosphere that is not in chemical equilibrium, which is relatively easy to determine from a distance by spectroscopy. However, significant advances in the ability to find and resolve light from smaller rocky worlds near to their star are necessary before this can be used to analyze extrasolar planets It is theorised that any technological society in space will be transmitting information. Projects such as SETI are conducting an astronomical search for radio activity that would confirm the presence of intelligent life. A related suggestion is that aliens might broadcast pulsed and continuous laser signals in the optical as well as infrared spectrum;[20] laser signals have the advantage of not "smearing" in the interstellar medium and may prove more conducive to communication between the stars. And while other communication techniques including laser transmission and interstellar spaceflight have been discussed seriously and may not be infeasible, the measure of effectiveness is the amount of information communicated per unit cost, resulting with the radio as method of choice.
READING FOR THE NEXT LECTURE
|
|
Site Design - University of Antarctica Technical Team - Ross Natural Science College; c. 2010 |