BIO 104

 

Mesozoic Life

 

 

    

 

 

Back

 

 

 

LECTURE 8: THE CRETACEOUS PERIOD

The Cretaceous (pronounced /kriːˈteɪʃəs/, usually abbreviated 'K' for its German translation "Kreide") is a geological period, reaching from the end of the Jurassic Period, (145.5 ± 4 million years ago (Ma) to the beginning of the Paleocene Period, 65.5 ± 0.3 Ma. It is the youngest geological period of the Mesozoic, and at 80 million years long, the longest period of the Phanerozoic. The end of the Cretaceous defines the boundary between the Mesozoic and Cenozoic eras.

The Cretaceous (from Latin creta meaning 'chalk' [4]) as a separate period was first defined by a Belgian geologist Jean d'Omalius d'Halloy in 1822, using strata in the Paris Basin[5] and named for the extensive beds of chalk (calcium carbonate deposited by the shells of marine invertebrates, principally coccoliths), found in the upper Cretaceous of continental Europe and the British Isles (including the White Cliffs of Dover).

During the Cretaceous, the late Paleozoic - early Mesozoic supercontinent of Pangaea completed its breakup into present day continents, although their positions were substantially different at the time. As the Atlantic Ocean widened, the convergent-margin orogenies that had begun during the Jurassic continued in the North American Cordillera, as the Nevadan orogeny was followed by the Sevier and Laramide orogenies.

Though Gondwana was still intact in the beginning of the Cretaceous, it broke up as South America, Antarctica and Australia rifted away from Africa (though India and Madagascar remained attached to each other); thus, the South Atlantic and Indian Oceans were newly formed. Such active rifting lifted great undersea mountain chains along the welts, raising eustatic sea levels worldwide. To the north of Africa the Tethys Sea continued to narrow. Broad shallow seas advanced across central North America (the Western Interior Seaway) and Europe, then receded late in the period, leaving thick marine deposits sandwiched between coal beds. At the peak of the Cretaceous transgression, one-third of Earth's present land area was submerged.[6]

The Cretaceous is justly famous for its chalk; indeed, more chalk formed in the Cretaceous than in any other period in the Phanerozoic.[7] Mid-ocean ridge activity — or rather, the circulation of seawater through the enlarged ridges — enriched the oceans in calcium; this made the oceans more saturated, as well as increased the bioavailability of the element for calcareous nanoplankton.[8] These widespread carbonates and other sedimentary deposits make the Cretaceous rock record especially fine. Famous formations from North America include the rich marine fossils of Kansas's Smoky Hill Chalk Member and the terrestrial fauna of the late Cretaceous Hell Creek Formation. Other important Cretaceous exposures occur in Europe (e.g., the Weald) and China (the Yixian Formation). In the area that is now India, massive lava beds called the Deccan Traps were erupted in the very late Cretaceous and early Paleocene.

The Berriasian epoch showed a cooling trend that had been seen in the last epoch of the Jurassic. There is evidence that snowfalls were common in the higher latitudes and the tropics became wetter than during the Triassic and Jurassic[9]. Glaciation was however restricted to alpine glaciers on some high-latitude mountains, though seasonal snow may have existed further south.

After the end of the Berriasian, however, temperatures increased again, and these conditions were almost constant until the end of the period[10]. This trend was due to intense volcanic activity which produced large quantities of carbon dioxide. The development of a number of mantle plumes across the widening mid-ocean ridges further pushed sea levels up, so that large areas of the continental crust were covered with shallow seas. The Tethys Sea connecting the tropical oceans east to west also helped in warming the global climate. Warm-adapted plant fossils are known from localities as far north as Alaska and Greenland, while dinosaur fossils have been found within 15 degrees of the Cretaceous south pole.[11]

A very gentle temperature gradient from the equator to the poles meant weaker global winds, contributing to less upwelling and more stagnant oceans than today. This is evidenced by widespread black shale deposition and frequent anoxic events.[12] Sediment cores show that tropical sea surface temperatures may have briefly been as warm as 42 °C (107 °F), 17 °C (31 °F) warmer than at present[when?], and that they averaged around 37 °C (99 °F). Meanwhile deep ocean temperatures were as much as 15 to 20 °C (27 to 36 °F) higher than today's.[13][14]

Flowering plants (angiosperms) spread during this period, although they did not become predominant until the Campanian stage near the end of the epoch. Their evolution was aided by the appearance of bees; in fact angiosperms and insects are a good example of coevolution. The first representatives of many leafy trees, including figs, planes and magnolias, appeared in the Cretaceous. At the same time, some earlier Mesozoic gymnosperms like Conifers continued to thrive; pehuéns (Monkey Puzzle trees, Araucaria) and other conifers being notably plentiful and widespread, although other gymnosperm taxa like Bennettitales died out before the end of the period.[citation needed]

On land, mammals were a small and still relatively minor component of the fauna. The fauna was dominated by archosaurian reptiles, especially dinosaurs, which were at their most diverse. Pterosaurs were common in the early and middle Cretaceous, but as the Cretaceous proceeded they faced growing competition from the adaptive radiation of birds, and by the end of the period only two highly specialised families remained.

The Liaoning lagerstätte (Chaomidianzi formation) in China provides a glimpse of life in the Early Cretaceous, where preserved remains of numerous types of small dinosaurs, birds, and mammals have been found. The coelurosaur dinosaurs found there represent types of the group maniraptora, which is transitional between dinosaurs and birds, and are notable for the presence of hair-like feathers.

During the Cretaceous, insects began to diversify, and the oldest known ants, termites and some lepidopterans, akin to butterflies and moths, appeared. Aphids, grasshoppers, and gall wasps appeared.

In the seas, rays, modern sharks and teleosts became common. Marine reptiles included ichthyosaurs in the early and middle of the Cretaceous, plesiosaurs throughout the entire period, and mosasaurs in the Late Cretaceous.

Baculites, a genus of straight-shelled form of ammonite, flourished in the seas. The Hesperornithiformes were flightless, marine diving birds that swam like grebes. Globotruncanid Foraminifera and echinoderms such as sea urchins and starfish (sea stars) thrived. The first radiation of the diatoms (generally siliceous, rather than calcareous) in the oceans occurred during the Cretaceous; freshwater diatoms did not appear until the Miocene. The Cretaceous was also an important interval in the evolution of bioerosion, the production of borings and scrapings in rocks, hardgrounds and shells (Taylor and Wilson, 2003).

 

READING FOR THE NEXT LECTURE

 

Return to BIO 104

    

 

     Email Prof. Karavelova