|
|
|
|
|
LECTURE 8: QUASARS A Quasar (contraction of QUASi-stellAR radio source) is an extremely bright and distant active galactic nucleus. They were first identified as being high redshift sources of electromagnetic energy, including radio waves and visible light that were point-like, similar to stars, rather than extended sources similar to galaxies. While there was initially some controversy over the nature of these objects, there is now a scientific consensus that a quasar is a compact halo of matter surrounding the central supermassive black hole of a young galaxy. Quasars show a very high redshift which is an effect of the expansion of the universe between the quasar and the Earth. When combined with Hubble's law, the implication of the redshift is that the quasars are very distant. To be observable at that distance, the energy output of quasars dwarf every other astronomical event. Quasars may readily release energy in levels equal to the output of hundreds of average galaxies combined. The output of light is equivalent to one trillion suns. In optical telescopes, quasars look like single points of light (i.e. point source) although many have had their "host galaxies" identified.[1] The galaxies themselves are often too dim to be seen with any but the largest telescopes. Most quasars cannot be seen with small telescopes, but 3C 273, with an average apparent magnitude of 12.9, is an exception. At a distance of 2.44 billion light-years (lt-yr), it is one of the most distant objects directly observable with amateur equipment. Some quasars display rapid changes in luminosity, which implies that they are small (an object cannot change faster than the time it takes light to travel from one end to the other; but see quasar J1819+3845 for another explanation). The highest redshift known for a quasar (as of December 2007) is 6.43,[2] which corresponds (assuming the currently-accepted value of 71 for the Hubble Constant) to a distance of approximately 28 billion light-years. (NB there are some subtleties in distance definitions in cosmology, so that distances greater than 13.7 billion lt-yr, or even greater than 27.4 = 2*13.7 lt-yr, can occur.) Quasars are believed to be powered by accretion of material into supermassive black holes in the nuclei of distant galaxies, making these luminous versions of the general class of objects known as active galaxies. No other currently known mechanism appears able to explain the vast energy output and rapid variability. Knowledge of quasars is advancing rapidly. As recently as the 1980s, there was no clear consensus as to their origin. More than 100,000 quasars are known. All observed quasar spectra have redshifts between 0.06 and 6.4. Applying Hubble's law to these redshifts, it can be shown that they are between 780 million and 28 billion light-years away. Because of the great distances to the furthest quasars and the finite velocity of light, we see them and their surrounding space as they existed in the very early universe. Most quasars are known to be farther than three billion light-years away. Although quasars appear faint when viewed from Earth, the fact that they are visible from so far away means that quasars are the most luminous objects in the known universe. The quasar that appears brightest in the sky is 3C 273 in the constellation of Virgo. It has an average apparent magnitude of 12.8 (bright enough to be seen through a small telescope), but it has an absolute magnitude of −26.7. From a distance of about 33 light-years, this object would shine in the sky about as brightly as our sun. This quasar's luminosity is, therefore, about 2 trillion (2 × 1012) times that of our sun, or about 100 times that of the total light of average giant galaxies like our Milky Way. The hyperluminous quasar APM 08279+5255 was, when discovered in 1998, given an absolute magnitude of −32.2, although high resolution imaging with the Hubble Space Telescope and the 10 m Keck Telescope revealed that this system is gravitationally lensed. A study of the gravitational lensing in this system suggests that it has been magnified by a factor of ~10. It is still substantially more luminous than nearby quasars such as 3C 273. Quasars are found to vary in luminosity on a variety of time scales. Some vary in brightness every few months, weeks, days, or hours. This evidence has allowed scientists to theorize that quasars generate and emit their energy from a very small region, since each part of the quasar would have to be in contact with other parts on such a time scale to coordinate the luminosity variations. As such, a quasar varying on the time scale of a few weeks cannot be larger than a few light-weeks across. Quasars exhibit many of the same properties as active galaxies: Radiation is nonthermal and some are observed to have jets and lobes like those of radio galaxies. Quasars can be observed in many parts of the electromagnetic spectrum including radio, infrared, optical, ultraviolet, X-ray and even gamma rays. Most quasars are brightest in their rest-frame near-ultraviolet (near the 1216 angstrom (121.6 nm) Lyman-alpha emission line of hydrogen), but due to the tremendous redshifts of these sources, that peak luminosity has been observed as far to the red as 9000 angstroms (900 nm or 0.9 µm), in the near infrared. Since quasars exhibit properties common to all active galaxies, the emissions from quasars can be readily compared to those of small active galaxies powered by supermassive black holes. To create a luminosity of 1040 W (the typical brightness of a quasar), a super-massive black hole would have to consume the material equivalent of 10 stars per year. The brightest known quasars devour 1000 solar masses of material every year. The largest known is estimated to consume matter equivalent to 600 Earths per hour. Quasars 'turn on' and off depending on their surroundings, and since quasars cannot continue to feed at high rates for 10 billion years, after a quasar finishes accreting the surrounding gas and dust, it becomes an ordinary galaxy. Quasars also provide some clues as to the end of the Big Bang's reionization. The oldest quasars (redshift > 4) display a Gunn-Peterson trough and have absorption regions in front of them indicating that the intergalactic medium at that time was neutral gas. More recent quasars show no absorption region but rather their spectra contain a spiky area known as the Lyman-alpha forest. This indicates that the intergalactic medium has undergone reionization into plasma, and that neutral gas exists only in small clouds. One other interesting characteristic of quasars is that they show evidence of elements heavier than helium, indicating that galaxies underwent a massive phase of star formation, creating population III stars between the time of the Big Bang and the first observed quasars. Light from these stars may have been observed in 2005 using NASA's Spitzer Space Telescope,[3] although this observation remains to be confirmed.
PLEASE READ FOR THE NEXT LECTURE
|
|
Site Design - University of Antarctica Technical Team - Ross Natural Science College; c. 2010 |