AST 102

 

The Outer Solar System

 

 

 

 

 

Back

 

 

 

LECTURE 8: THE DWARF PLANET PLUTO

Pluto (pronounced [ˈpluːtoʊ] , from Latin: Plūto, Greek: Πλούτων), also designated 134340 Pluto, is the second-largest known dwarf planet in the Solar System (after Eris) and the tenth-largest body observed directly orbiting the Sun. Originally classified as a planet, Pluto is now considered the largest member[6] of a distinct region called the Kuiper belt. Like other members of the belt, it is composed primarily of rock and ice and is relatively small: approximately a fifth the mass of the Earth's moon and a third its volume. It has a highly eccentric and highly inclined orbit. The eccentricity takes it from 30 to 49 AU (4.4—7.4 billion km) from the Sun, causing Pluto to occasionally come closer to the Sun than Neptune. Pluto and its largest moon, Charon, are often treated together as a binary system because the barycentre of their orbits does not lie within either body.[7] The International Astronomical Union (IAU) has yet to formalise a definition for binary dwarf planets, and until it passes such a ruling, Charon is classified as a moon of Pluto.[8] Pluto has two known smaller moons, Nix and Hydra, discovered in 2005.[9]

From its discovery in 1930 until 2006, Pluto was counted as the Solar System's ninth planet. In the late 20th and early 21st centuries, however, many objects similar to Pluto were discovered in the outer solar system, notably the scattered disc object Eris, which is 27% more massive than Pluto.[10] On August 24, 2006 the IAU defined the term "planet" for the first time. This definition excluded Pluto, which the IAU reclassified as a member of the new category of dwarf planets along with Eris and Ceres.[11] After the reclassification, Pluto was added to the list of minor planets and given the number 134340.[12][13]

In the 1840s, using Newtonian mechanics, Urbain Le Verrier predicted the position of the then-undiscovered planet Neptune after analysing perturbations in the orbit of Uranus. Hypothesising that the perturbations were caused by the gravitational pull of another planet, Le Verrier sent his calculations to German astronomer Johann Gottfried Galle. On September 23, 1846, the night following his receipt of the letter, Galle and his student Heinrich d'Arrest found Neptune exactly where Le Verrier had predicted.[14]

Observations of Neptune in the late 19th century caused astronomers to speculate that Uranus' orbit was being disturbed by another planet in addition to Neptune. In 1905, Percival Lowell, a wealthy Bostonian who had founded the Lowell Observatory in Flagstaff, Arizona in 1894, started an extensive project in search of a possible ninth planet, which he termed "Planet X".[15] By 1909, Lowell and William H. Pickering had suggested several possible celestial coordinates for such a planet.[16] Lowell and his observatory conducted his search from 1905 until his death in 1916, but to no avail.

The observatory's search for Planet X did not resume until 1929,[17] when its director, Vesto Melvin Slipher, summarily handed the job of locating Planet X to Clyde Tombaugh, a 22-year-old Kansas farm boy who had only just arrived at the Lowell Observatory after Slipher had been impressed by a sample of his astronomical drawings.[17]

Tombaugh's task was systematically to image the night sky in pairs of photographs taken two weeks apart, then examine each pair and determine whether any objects had shifted position. Using a machine called a blink comparator, he rapidly shifted back and forth between views of each of the plates, to create the illusion of movement of any objects that had changed position or appearance between photographs. On February 18, 1930, after nearly a year of searching, Tombaugh discovered a possible moving object on photographic plates taken on January 23 and January 29 of that year. A lesser-quality photograph taken on January 20 helped confirm the movement. After the observatory obtained further confirmatory photographs, news of the discovery was telegraphed to the Harvard College Observatory on March 13, 1930. The new object would later be found on photographs dating back to March 19, 1915.[16]

Once found, Pluto's faintness and lack of a resolvable disc cast doubt on the idea that it could be Lowell's Planet X. Throughout the mid-20th century, estimates of Pluto's mass were often revised downward. In 1978, the discovery of Pluto's moon Charon allowed the measurement of Pluto's mass for the first time. Its mass, roughly 0.2 percent that of the Earth, was far too small to account for the discrepancies in Uranus. Subsequent searches for an alternate Planet X, notably by Robert Harrington,[27] failed. In 1993, Myles Standish used data from Voyager 2's 1989 flyby of Neptune, which had revised the planet's total mass downward by 0.5 percent, to recalculate its gravitational effect on Uranus. With the new figures added in, the discrepancies, and with them the need for a Planet X, vanished.[28] Today the overwhelming consensus among astronomers is that Planet X, as Lowell defined it, does not exist. Lowell had made a prediction of Planet X's position in 1915 that was fairly close to Pluto's actual position at that time; however, Ernest W. Brown concluded almost immediately that this was a coincidence, a view still held today.[29]

Possible structure of Pluto.
1. Frozen nitrogen
2. Water ice
3. Silicate and water ice

Pluto's distance from Earth makes in-depth investigation difficult. Many details about Pluto will remain unknown until 2015, when the New Horizons spacecraft is expected to arrive there.[30]

Pluto's apparent magnitude averages 15.1, brightening to 13.65 at perihelion.[1] To see it, a telescope is required; around 30 cm (12 in) aperture being desirable.[31] It looks indistinct and star-like even in very large telescopes because its angular diameter is only 0.11". It is light brown with a very slight tint of yellow.[32]

Spectroscopic analysis of Pluto's surface reveals it to be composed of more than 98 percent nitrogen ice, with traces of methane and carbon monoxide.[33][34] Distance and current limits on telescope technology make it impossible directly to photograph surface details on Pluto. Images from the Hubble Space Telescope barely show any distinguishable surface definitions or markings.[35]

The best images of Pluto derive from brightness maps created from close observations of eclipses by its largest moon, Charon. Using computer processing, observations are made in brightness factors as Pluto is eclipsed by Charon. For example, eclipsing a bright spot on Pluto makes a bigger total brightness change than eclipsing a dark spot. Using this technique, one can measure the total average brightness of the Pluto-Charon system and track changes in brightness over time.[36] Maps composed by the Hubble Space Telescope reveal that Pluto's surface is remarkably heterogeneous, a fact also evidenced by its lightcurve and by periodic variations in its infrared spectra. The face of Pluto oriented toward Charon contains more methane ice, while the opposite face contains more nitrogen and carbon monoxide ice. This makes Pluto the second most contrasted body in the Solar System after Iapetus.[37]

The Hubble Space Telescope places Pluto's density at between 1.8 and 2.1 g/cm³, suggesting its internal composition consists of roughly 50–70 percent rock and 30–50 percent ice.[34] Because decay of radioactive minerals would eventually heat the ices enough for them to separate from rock, scientists expect that Pluto's internal structure is differentiated, with the rocky material having settled into a dense core surrounded by a mantle of ice. It is also possible that such heating may continue today, creating a subsurface ocean of liquid water.[38]

Astronomers, assuming Pluto to be Lowell's Planet X, initially calculated its mass on the basis of its presumed effect on Neptune and Uranus. In 1955 Pluto was calculated to be roughly the mass of the Earth, with further calculations in 1971 bringing the mass down to roughly that of Mars.[39] However, in 1976, Dale Cruikshank, Carl Pilcher and David Morrison of the University of Hawaii calculated Pluto's albedo for the first time, finding that it matched that for methane ice; this meant Pluto had to be exceptionally luminous for its size and therefore could not be more than 1 percent the mass of the Earth.[39][40]

The discovery of Pluto's satellite Charon in 1978 enabled a determination of the mass of the Pluto–Charon system by application of Newton's formulation of Kepler's third law. Once Charon's gravitational effect on Pluto was measured, estimates of Pluto's mass fell to 1.31×1022 kg—less than 0.24 percent that of the Earth.[41] Observations of Pluto in occultation with Charon were able to fix Pluto's diameter at roughly 2,390 km.[42] With the invention of adaptive optics astronomers were able to determine its shape accurately.[43]

Among the objects of the Solar System, Pluto is not only smaller and much less massive than any planet, but at less than 0.2 lunar masses it is also smaller than seven of the moons: Ganymede, Titan, Callisto, Io, Earth's Moon, Europa and Triton. Pluto is more than twice the diameter and a dozen times the mass of Ceres, a dwarf planet in the asteroid belt. However, it is smaller than the dwarf planet Eris, a trans-Neptunian object discovered in 2005.

Pluto's atmosphere consists of a thin envelope of nitrogen, methane, and carbon monoxide, derived from the ices on its surface.[44] As Pluto moves away from the Sun, its atmosphere gradually freezes and falls to the ground. As it edges closer to the Sun, the temperature of Pluto's solid surface increases, causing the ices to sublimate into gas. This creates an anti-greenhouse effect; much like sweat cools the body as it evaporates from the surface of the skin, this sublimation has a cooling effect on the surface of Pluto. Scientists have recently discovered,[45] by use of the Submillimeter Array, that Pluto's temperature is 43 kelvins, 10 K colder than expected.

Pluto was found to have an atmosphere from an occultation observation in 1985; the finding was confirmed and significantly strengthened by extensive observations of another occultation in 1988. When an object with no atmosphere occults a star, the star abruptly disappears; in the case of Pluto, the star dimmed out gradually.[46] From the rate of dimming, the atmospheric pressure was determined to be 0.15 pascal, roughly 1/700,000 that of Earth.[47]

In 2002, another occultation of a star by Pluto was observed and analysed by teams led by Bruno Sicardy of the Paris Observatory,[48] James L. Elliot of MIT,[49] and Jay Pasachoff of Williams College.[50] The atmospheric pressure was estimated to be 0.3 pascal, even though Pluto was farther from the Sun than in 1988 and thus should have been colder and had a more rarefied atmosphere. One explanation for the discrepancy is that in 1987 the south pole of Pluto came out of shadow for the first time in 120 years, causing extra nitrogen to sublimate from the polar cap. It will take decades for the excess nitrogen to condense out of the atmosphere.[51] Another stellar occultation was observed by the MIT-Williams College team of James Elliot, Jay Pasachoff, and a Southwest Research Institute team led by Leslie Young on 12 June 2006 from sites in Australia.[52]

In October 2006, Dale Cruikshank of NASA/Ames Research Center (a New Horizons co-investigator) and his colleagues announced the spectroscopic discovery of ethane on Pluto's surface. This ethane is produced from the photolysis or radiolysis (i.e., the chemical conversion driven by sunlight and charged particles) of frozen methane on Pluto's surface and suspended in its atmosphere.[53]

Pluto's orbit is markedly different from those of the planets. The planets all orbit the Sun close to a flat reference plane called the ecliptic and have nearly circular orbits. In contrast, Pluto's orbit is highly inclined relative to the ecliptic (over 17°) and highly eccentric (elliptical). This high eccentricity leads to a small region of Pluto's orbit lying closer to the Sun than Neptune's. Pluto was last interior to Neptune's orbit between February 7, 1979 and February 11, 1999. Detailed calculations indicate that the previous such occurrence lasted only fourteen years, from July 11, 1735 to September 15, 1749, whereas between April 30, 1483 and July 23, 1503, it had also lasted 20 years.

Although this repeating pattern may suggest a regular structure, in the long term Pluto's orbit is in fact chaotic. While computer simulations can be used to predict its position for several million years (both forward and backward in time), after intervals longer than the Lyapunov time of 10–20 million years, it is impossible to determine exactly where Pluto will be because its position becomes too sensitive to unmeasurably small details of the present state of the solar system.[54][55] For example, at any specific time many millions of years from now, Pluto may be at aphelion or perihelion (or anywhere in between), with no way for us to predict which. This does not mean that the orbit of Pluto itself is unstable, however, only that its position along that orbit is impossible to determine far into the future. In fact, several resonances and other dynamical effects conspire to keep Pluto's orbit stable, safe from planetary collision or scattering.

Orbit of Pluto — polar view. This 'view from above' shows how Pluto's orbit (in red) is less circular than Neptune's (in blue), and how Pluto is sometimes closer to the Sun than Neptune. The darker halves of both orbits show where they pass below the plane of the ecliptic. The positions of both bodies are as of April 16, 2006; by April 2007 they had changed by about three pixels (~1 AU).

Despite Pluto's orbit apparently crossing that of Neptune when viewed from directly above the ecliptic, the two objects cannot collide. This is because their orbits are aligned so that Pluto and Neptune can never approach closely. Several factors contribute to this.

At the simplest level, one can examine the two orbits and see that they do not intersect. When Pluto is closest to the Sun, and hence closest to Neptune's orbit as viewed in a top-down projection, it is also the farthest above the ecliptic. This means Pluto's orbit actually passes above that of Neptune, preventing a collision.[56] Indeed, the part of Pluto's orbit that lies as close or closer to the Sun than that of Neptune lies about 8 AU above the ecliptic,[57] and so a similar distance above Neptune's orbit.[58] Pluto's ascending node, the point at which the orbit crosses the ecliptic, is currently separated from Neptune's by over 21°;[59] their descending nodes are separated by a similar angular distance (see diagram). Since Neptune's orbit is almost flat with respect to the ecliptic, Pluto is far above it by the time the two orbits cross.

This alone is not enough to protect Pluto; perturbations (e.g., orbital precession) from the planets, particularly Neptune, would adjust Pluto's orbit, so that over millions of years a collision could be possible. Some other mechanism or mechanisms must therefore be at work. The most significant of these is a mean motion resonance with Neptune.

Pluto lies in the 3:2 mean motion resonance of Neptune: for every three orbits of Neptune around the Sun, Pluto makes two. The two objects then return to their initial positions and the cycle repeats, each cycle lasting about 500 years. This pattern is configured so that, in each 500-year cycle, the first time Pluto is near perihelion Neptune is over 50° behind Pluto. By Pluto's second perihelion, Neptune will have completed a further one and a half of its own orbits, and so will be a similar distance ahead of Pluto. In fact, the minimum separation of Pluto and Neptune is over 17 AU; Pluto actually comes closer (11 AU) to Uranus than it does to Neptune.[58]

The 3:2 resonance between the two bodies is highly stable, and is preserved over millions of years.[60] This prevents their orbits from changing relative to one another — the cycle always repeats in the same way — and so the two bodies can never pass near to each other. Thus, even if Pluto's orbit were not highly inclined the two bodies could never collide.[58]

Numerical studies have shown that over periods of millions of years, the general nature of the alignment between Pluto's and Neptune's orbits does not change.[56][61] However, there are several other resonances and interactions that govern the details of their relative motion, and enhance Pluto's stability. These arise principally from two additional mechanisms (in addition to the 3:2 mean motion resonance).

First, Pluto's argument of perihelion, the angle between the point where it crosses the ecliptic and the point where it is closest to the Sun, librates around 90°.[61] This means that when Pluto is nearest the Sun, it is at its farthest above the plane of the solar system, preventing encounters with Neptune. This is a direct consequence of the Kozai mechanism,[56] which relates the eccentricity of an orbit to its inclination, relative to a larger perturbing body — in this case Neptune. Relative to Neptune, the amplitude of libration is 38°, and so the angular separation of Pluto's perihelion to the orbit of Neptune is always greater than 52° (= 90°–38°). The closest such angular separation occurs every 10,000 years.[60]

Second, the longitudes of ascending node of the two bodies — the points where they cross the ecliptic - are in near-resonance with the above libration. When the two longitudes are the same — that is, when one could draw a straight line through both nodes and the Sun — Pluto's perihelion lies exactly at 90°, and it comes closest to the Sun at its peak above Neptune's orbit. In other words, when Pluto most closely intersects the plane of Neptune's orbit, it must be at its farthest beyond it. This is known as the 1:1 superresonance.[56]

To understand the nature of the libration, imagine a polar point of view, looking down on the ecliptic from a distant vantage point where the planets orbit counter-clockwise. After passing the ascending node, Pluto is interior to Neptune's orbit and moving faster, approaching Neptune from behind. The strong gravitational pull between the two causes angular momentum to be transferred to Pluto, at Neptune's expense. This moves Pluto into a slightly larger orbit, where it travels slightly slower, in accordance with Kepler's third law. As its orbit changes, this has the gradual effect of changing the pericentre and longitudes of Pluto (and, to a lesser degree, of Neptune). After many such repetitions, Pluto is sufficiently slowed, and Neptune sufficiently speeded up, that Neptune begins to catch Pluto at the opposite side of its orbit (near the opposing node to where we began). The process is then reversed, and Pluto loses angular momentum to Neptune, until Pluto is sufficiently speeded up that it begins to catch Neptune once again at the original node. The whole process takes about 20,000 years to complete.[58][60]

Pluto has three known natural satellites: Charon, first identified in 1978 by astronomer James Christy; and two smaller moons, Nix and Hydra, both discovered in 2005.[62]

The Plutonian moons are unusually close to Pluto, compared to other observed systems. Moons could potentially orbit Pluto up to 53% (or 69%, if retrograde) of the Hill sphere radius, the stable gravitational zone of Pluto's influence. For example, Psamathe orbits Neptune at 40% of the Hill radius. In the case of Pluto, only the inner 3% of the zone is known to be occupied by satellites. In the discoverers’ terms, the Plutonian system appears to be "highly compact and largely empty."[63]

The Pluto-Charon system is noteworthy for being the largest of the solar system's few binary systems, defined as those whose barycentre lies above the primary's surface (617 Patroclus is a smaller example).[64] This and the large size of Charon relative to Pluto has led some astronomers to call it a dwarf double planet.[65] The system is also unusual among planetary systems in that each is tidally locked to the other: Charon always presents the same face to Pluto, and Pluto always presents the same face to Charon. If one were standing on Pluto's near side, Charon would hover in the sky without moving; if one were to travel to the far side, one would never see Charon at all.[66] In 2007, observations by the Gemini Observatory of patches of ammonia hydrates and water crystals on the surface of Charon suggested the presence of active cryo-geysers.[67]

Two additional moons of Pluto were imaged by astronomers working with the Hubble Space Telescope on May 15, 2005, and received provisional designations of S/2005 P 1 and S/2005 P 2. The International Astronomical Union officially named Pluto's newest moons Nix (or Pluto II, the inner of the two moons, formerly P 2) and Hydra (Pluto III, the outer moon, formerly P 1), on June 21, 2006.[68]

These small moons orbit Pluto at approximately two and three times the distance of Charon: Nix at 48,700 kilometres and Hydra at 64,800 kilometres from the barycenter of the system. They have nearly circular prograde orbits in the same orbital plane as Charon, and are very close to (but not in) 4:1 and 6:1 mean motion orbital resonances with Charon.[69]

Observations of Nix and Hydra to determine individual characteristics are ongoing. Hydra is sometimes brighter than Nix, suggesting either that it is larger or that different parts of its surface may vary in brightness. Sizes are estimated from albedos. The moons' spectral similarity to Charon suggests a 35% albedo similar to Charon's; this value results in diameter estimates of 46 kilometres for Nix and 61 kilometres for the brighter Hydra. Upper limits on their diameters can be estimated by assuming the 4% albedo of the darkest Kuiper Belt objects; these bounds are 137 ± 11 km and 167 ± 10 km, respectively. At the larger end of this range, the inferred masses are less than 0.3% that of Charon, or 0.03% of Pluto's.[70]

The discovery of the two small moons suggests that Pluto may possess a variable ring system. Small body impacts can create debris that can form into planetary rings. Data from a deep optical survey by the Advanced Camera for Surveys on the Hubble Space Telescope suggest that no ring system is present. If such a system exists, it is either tenuous like the rings of Jupiter or is tightly confined to less than 1,000 km in width.[71]

In imaging the Plutonian system, observations from Hubble placed limits on any additional moons. With 90% confidence, no additional moons larger than 12 km (or a maximum of 37 km with an albedo of 0.041) exist beyond the glare of Pluto 5 arcseconds from the dwarf planet. This assumes a Charon-like albedo of 0.38; at a 50% confidence level the limit is 8 kilometres.[72]

 

PLEASE READ FOR THE NEXT LECTURE

Return to Ast 102

 

 

 

 

     Prof. Drygalski